If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+4x-142.5=0
a = 1; b = 4; c = -142.5;
Δ = b2-4ac
Δ = 42-4·1·(-142.5)
Δ = 586
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-\sqrt{586}}{2*1}=\frac{-4-\sqrt{586}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+\sqrt{586}}{2*1}=\frac{-4+\sqrt{586}}{2} $
| (0.5y)/4/9=(y+3)8 | | d+15=70 | | |100y^2+100y+100=0| | | w+4/4w+6=3/4 | | (.5y)/4/9=(y+3)8 | | 3-2p=-1 | | 3w+10=5w-30 | | y–23+2y–49+2y–48=189 | | 100y^2+100y+100=0 | | -12=-3(x+1) | | -12(5-k)=(-72) | | z^2+169=0 | | x/3-17=16 | | 9b/5=4/9 | | 8g–6g=8 | | X2+28x-38=0 | | x+1.6=2.3 | | j/4+3=6 | | -3(v–81)=-15 | | 54=-7t-9 | | 16m-6m=20 | | 2x-2(8)=6 | | 16w+4w=20 | | -9x+4=3x-20 | | 2(c-13)=-2 | | 2(2)-2y=6 | | x2+x-182=0 | | 9p-7p=4 | | 2(x-4)=7-6x-4+8x | | y–23+2y–49+2y–48=180 | | 2(c−13)=−2 | | 4(3a+15)+7a+63=180 |